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LETTER TO THE EDITOR 

Perturbation theory of boson dynamical systems 
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Laboratory of Physical Chemistry, Eidgenossische Technische Hochshule-Zentrum, 
CH-8092 Zurich. Switzerland 

Received 4 June 1990 

Abstract. Dynamical evolutions of boson (spin-boson and related) systems based on the 
widely used canonical commutation relations C* algebra have a shortcoming. The dynami- 
cal group is not pointwise norm-continuous and therefore cannot be perturbed by a 
(bounded self-adjoint) element of the underlying abstract C* algebra. Hence it is necessary 
to define notions like ‘invariant state’, ‘ground state’, ‘KMS state’, etc with respect to the 
perturbed dynamics in suitable Hilbert space representations. here the original dynamical 
system is supplemented by an auxiliary pointwise norm-continuous dynamical system in 
such a way that invariant states of the original system correspond to invariant states of the 
auxiliary system. This bijective correspondence is sequentially continuous and preserves 
the KMS (ground state) characterizing conditions. As a typical application it is verified 
that Spohn’s ground states of the spin-boson model (arising as a temperature to zero limit 
of thermic equilibrium states) are ground states in the algebraic sense, i.e. are eigenstates 
of the respective (Gel’fand-Naimark-Segal) Hamiltonian with an eigenvalue at the lower 
end of the Hamiltonian spectrum. 

A boson system (cf [l], section 5.2.2.2) is characterized by a pre-Hilbert space X with 
scalar product ( -  I a ) .  It’s C* algebra A(X) is generated by unitary ‘Weyl’ operators 
W ( f ) ,  f e  X, with the canonical commutation relations 

W ( f )  W(Y) = W(f+f’) exP{-i Wflf)) AYEX (1) 

where Im(f1f) is the imaginary part of the scalar product (fly). The C* algebra A ( X )  
is a concise reformulation of Heisenberg’s commutation relations (or boson commuta- 
tion relations), particularly convenient for systems with infinitely many degrees of 
freedom. 

A C* algebra d is characterized by a norm 11 ( 1  (‘length’ of operators) fulfilling 

IIA*AII = llAIl2 A €  SB. (2) 
This norm is mathematically useful but the respective norm topology has no particular 
physical significance. The physically relevant topology is the a-weak topology men- 
tioned below, which is defined with respect to expectation values. 

Representations of a C* algebra on a Hilbert space bring in a particular physical 
context. Physically inequivalent representations arise if the C* algebra describes a 
system with infinitely many degrees of freedom. For a boson C* algebra A(%) the 
Fock representation plays a role if one studies ground states with respect to a quasi-free 
time evolution. Equilibrium states (KMS states with non-zero temperature) of a boson 
system already use a representation inequivalent to the Fock representation. Neither 
ground states nor equilibrium states of spin-boson models [2-41 can generally be 
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described in a Fock space representation. The use of phsyically inequivalent representa- 
tions of infinite sytems broadens the scope of quantum mechanical theory. It allows 
the description and even the derivation of superselection rules (cf [2,5-81). 

The physically relevant observables in a specific representation (X, T )  arise as 
limits of (represented) C*-algebra operators. An operator T acting on the Hilbert 
space X is said to be the limit of a sequence ( T ( A ~ ) ) ~ ~ ~ ,  where the operators Aj are 
elements of the underlying C* algebra d, if convergence 

lim Tr( r ( A j ) D )  = Tr( TD)  (3) 
j -m  

holds with respect to an arbitrary positive trace-class operator D acting on the rep- 
resentation Hilbert space (a-weak limit). Here ((Tr( .))) denotes the trace of an operator. 
Limits in the a-weak sense are defined with respect to expectation values and are 
therefore physically relevant. The set of all a-weak limits of C*-algebra operators in 
a certain representation form a von Neumann algebra ( W *  algebra) denoted by 
{ ~ ( d ) } ” .  As examples for the limit process (3) consider the construction of a global 
magnetization observable or a global momentum observable starting with local ones. 

The C* algebra of a ‘small’ system coupled to a boson field is given as the tensor 
product of the respective C* algebras. Consider as an example a spin-boson system 
consisting of one spin-; and infinitely many bosons (cf [3,4,9-141): the relevant C* 
algebra is a tensor product A 2 @ A ( X )  of the algebra &12 of the 2 x 2  matrices and a 
suitable boson algebra A(X) .  

The Hamiltonian of this spin-boson system consists of three parts, referring to the 
spin, the field and the coupling between them. The field part together with the coupling 
corresponds to a dynamical automorphic group a o  of the C* algebra A 2 @ A ( Y t )  [4]. 
The Hamiltonian m1 of the isolated spin is considered as a perturbation (a, is a Pauli 
matrix and 2~ is the level splitting). 

Heisenberg dynamical (automorphic) evolutions 

t + t e R , A E d  (4) 

of a boson-type C* algebra d are frequently built up from a quasifree evolution 
sending Weyl operators into Weyl operators. Consider the dynamics a. as an example. 
Since arbitrary distinguished Weyl operators W ( f l )  and W ( j 2 )  fulfil ([ 11, theorem 
5.2.8.): 

II W ( h )  - W(f2)  II = 2 ( 5 )  

one cannot expect the mappings (4) to be norm-continuous, In mathematics and 
mathematical physics, on the other hand, this sort of norm-continuity is often assumed 
to hold for dynamical groups of C* algebras. The respective C* system (consisting 
of algebra and dynamics) is then called pointwise norm-continuous. 

The perturbation of a dynamical group by a bounded self-adjoint operator is no 
problem for pointwise norm-continuous dynamical groups (cf [ 13, section 5.4). For 
C* systems without this property, such as the spin-boson system with the dynamics 
ao of above, one cannot properly define a perturbed dynamics of the underlying C* 
algebra. That this is not just due to technical problems can be inferred from the 
examples given in [15]. 

As a consequence, even invariant states with respect to the perturbed dynamics 
cannot be defined abstractly (=Hilbert space free) but only with respect to a suitable 
representation, e.g., its associated Gel’fand-Naimark-Segal representation (in short 
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GNS representation, see [16], sections 2.3.16 and 2.3.17). The same remark holds a 
forteriori for KMS states, ground states, etc. 

Definition 1 .  Consider a C* algebra Se and a dynamical (automorphic) group {allt E R} 
which is not (necessarily) pointwise norm-continuous. Let P be a self-adjoint element 
of Se. Then a state # on Se is called invariant under the perturbed dynamics ‘aP’  if 
there exists a representation T of d on a Hilbert space X, a self-adjoint operator H 
acting on X and an eigenvector 6 of H in X such that 

~ ( a , ( A ) ) = e x p { i ( H - P ) t } ~ ( A )  exp{-i(H-P)t} t € R  (6 )  

# ( A )  = (51dA)5)  A €  Se. (7) 

The ‘Hamiltonian’ ( H  - P) corresponds to the dynamics a, whereas the perturbed 
Hamiltonian H = ( H  - P) + P should implement the perturbed dynamics ‘a ’. The 
latter is written in quotation marks, since one has no guarantee that it defines any 
dynamics on sd, that is 

exp{iHt}T(d) exp{-iHt} g ~ ( d )  ( 8 )  

exp{iHt}{rr(Se)}” exp{-iHt} = { ~ ( s d ) } ” .  (9) 

may arise [15]. Nevertheless, the associated von Neumann algebra { ~ ( s d ) } ”  fulfils 

Therefore it is possible to define a perturbed dynamics G p  on the von Neumann algebra 

(10) 

{ 4 )}” by 

G ~ ( x )  := exp{iHt}X exp{-iHt} x E {T(Se)}”, t E R. 

As an example for a perturbation P consider the Hamiltonian &ul of the (isolated) 
spin in the spin-boson model above. 

The property of being an ‘aP’-invariant state can be checked in the GNS representa- 
tion; that is, the representation T of definition 1 can be replaced by the GNS representa- 
tion T+. Hence special classes of invariant states (KMS state, ground states,. . .) can 
be defined with respect to the GNs-von Neumann algebra {~~(sd)}’’ and the respective 
dynamics (9). For ground states, e.g., definition 1 has to be modified only slightly by 
saying that the eigenvector 5 has an eigenvalue at the lower end of the Hamiltonian’s 
spectrum. Such ground states are called ‘ground states in the algebraic sense’. 

The problem with these definitions is that varous ‘obvious’ interrelations cannot 
be proven. Consider, e.g., a sequence ( w , ) , , ~ ~  of &KMS states with respect to the 
perturbed dynamics ‘ap’.  Assume that this sequence converges to a state #o with 
respect to expectation values 

n-m lim U ,  ( A )  = &(A) A € & .  (11) 

One would expect cp,, to be a ground state in the sense defined in the last paragraph. 
To prove this for pointwise norm-continuous C* systems does not present any problems. 
Perturbation theory is then defined abstractly (without reference to representations) 
and the powerful tool of a generator S of the dynamics a allows us to give this proof 
fairly easily (cf [l], proposition 5.3.23). 

Ground states of the spin-boson model are introduced by [3] in this way. Apart 
from the Hamiltonian of the isolated spin an additional perturbation hv3 is used, where 
u3 is a Pauli matrix and h is the strength of the pertrubation. It is finally set to zero 
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( h  + *to) and thereby offers the chance to get two different ground states and hence 
break the symmetry of the spin-boson model. Again, pointwise norm-continuity would 
allow to prove that these limits give rise to ground states in the algebraic sense. 

The propositions below show that these difficulties can be overcome. A given C* 
system without norm-continuity properties can be replaced-for certain purposes-by 
an auxiliary pointwise norm-continuous C* system. The auxiliary system admits an 
infinitesimal generator and hence allows to transfer various proofs already known for 
pointwise norm-continuous C* systems. The continuity properties necessary are intro- 
duced in the following definition. 

Dejnition 2. Consider a C" algebra d and a dynamical (automorphic) group {atl t E R} 
which is not (necessarily) pointwise norm-continuous. Then a state 4 on d is called 
a-continuous if the mappings 

t +  4 ( A a , ( B ) C )  t E R  (12) 

are continuous for arbitrary elements A, B and C in d, 

This sort of continuity condition refers to a physically relevant topology and is 
rather weak. It should be fulfilled by any physically relevant state. Any invariant state 
in the sense of definition 1 is a-continuous. Furthermore, any state of ii  pointwise 
norm-continuous C* system is automatically a-continuous. 

The propositions below generalize the results of [17] on invariant states of C* 
systems without pointwise norm-continuity properties. Proofs will be given elsewhere. 
The main difficulty is settled in the following proposition. 

Proposition. Let (d, R, a) be a C* system which is not (necessarily) pointwise norm- 
continuous. Consider a self-adjoint perturbation P E  d of the dynamics a. Let ( r $ n ) n 9 N  

be a sequence of 'aP'-invariant states converging to an a-continuous state &,. Then 
it follows that & is again 'ap' invariant. 

The result of this proposition is completely trivial for a pointwise norm-continuous 
C* system. It paves the way for the following main theorem and its corollaries. 

Theorem. Let ( d , R , a )  be a C*-dynamical system where the action a is not 
(necessarily) pointwise norm-continuous and consider a perturbation of this action by 
a self-adjoint operator P from d. Then there exist: 

(i)  a pointwise norm-continuous C* system (gP ,  R, e'); 
(ii) a representation p of 9' on a Hilbert space Xp ; 
(iii) and an affine sequentially continuous bijection between the space of 'ap'- 

invariant states on d and the space of OP-invariant states 6 on $3' which can be 
implemented by a trace-class operator D acting on Xp. 
Consider invariant states 4 and 6 on d and a', corresponding under the above 
bijection, and denote by (X+y T+, t+) and (XJ, TJ ,  6 6 )  the associated GNS representa- 
tions. Then one can identify (modulo unitary equivalence) X+ and XJ, t+ and 64, the 
von Neumann algebras { TJ( 9))" and { T+( d)}" and the respective dynamics on these 
von Neumann algebras. Hence Cp is a P-KMS state (ground state) with respect to the 
action 'ap' if and only if 6 is a P-KMS state (ground state) with respect to the 
action e'. 



Letter to the Editor L787 

Remark. ( a )  A state 
acting on X,, if 

on 9‘ is said to be implemented by a trace-class operator D 

m = W D P { B l )  B € a P  (13) 
holds. 

( b )  The dynamics on the von Neumann algebra { T+( Sa)}” is defined via (10). For 
the respective dynamics on { ~ 6 (  9))’l the corresponding construction coincides with 
the ordinary GNS dynamics ([16], section 2.3.17). 

Corollary 1. Let (Sa,R, a )  be a C*-dynamical system where the action a is not 
(necessarily) pointwise norm-continuous. Consider a sequence ( on),EN of &KMS states 
with respect to the perturbed (pseudo) dynamics ‘aP’, converging to a state in the 
weak *-topology. Assume that the state is a-continuous, and that 

lim Pn = /3 
,+a3 

exists in R U (00). It follows that 

Proof: Use ([l], proposition 5.3.23). 

Corollary 2. Let (Sa, R, a )  be a C*-dynamical system where the action a is not 
(necessarily) pointwise norm-continuous. Consider a sequence ( c#J,),€~ of ground states 
with respect to a perturbed (pseudo) dynamics ‘ap’,  converging to a state in the 
weak *-topology. Assume that the state 4o is a-continuous. It follows that 4o is a 
ground state. 

is a /3-KMS state (ground state, if /3 =CO).  

By explicit computation, one may show that the ground states of the spin-boson 
model as defined by Spohn in [3] are a’ continuous (see definition 2). Here a o  is the 
dynamics of the spin-boson model without the Hamiltonian part of the isolated spin. 
The latter is considered as a perturbation. Some minor modifications of the theorem 
(incorporating the additional perturbation hv3 mentioned above) then lead to: 

Corollary 3. Spohn’s ground states of the spin-boson model are ground states in the 
algebraic sense, i.e. are eigenstates of the respective (Gel’fand-Naimark-Segal) 
Hamiltonian with an eigenvalue at the lower end of the Hamiltonian’s spectrum. 

References 

[ 11 Bratteli 0 and Robinson D W 1981 Operator Algebras and Quantum Statistical Mechanics vol2 (Springer: 

[2] Pfeifer P 1980 Chiral Molecules-a Superselection Rule Induced by the Radiation Field Thesis 

[3] Spohn H 1989 Ground state(s) of the spin-boson Hamiltonian Commun. Math. Phys. 123 277-304 
[4] Fannes M, Nachtergaele B and Verbeure A 1988 The equilbirium states of the spin-boson model 

[5] Primas H 1983 Chemistry, Quantum Mechnics, and Reductionism. Perspectives in Tneoretical Chemistry 

[ 6 ]  Strocchi F 1985 Elements of Quantum Mechanics of Infinite Systems (Singapore: World Scientific) 
[7] Amann A and Muller-Herold U 1986 Momentum operators for large systems Helu. Phys. Acta 59 131 1-20 
[SI Amann A 1988 Chirality as a classical observable in algebraic quantum mechanics Fractals, Quasicrys- 

tals, Chaos, Knots and Algebraic Quantum Mechanics ed A Amann, L Cederbaum and W Cans 
(Dordrecht: Kluwer) pp 305-25 

New York) 

ETH-Zurich No 6551, ok Gotthard S + D AG 

Commun. Math. Phys. 114 537-48 

(Berlin: Springer) 2nd edn 



L788 Letter to the Editor 

[9] Spohn H and Dumcke R 1985 Quantum tunneling with dissipation and the k ing  model over R J. Stat. 

[ 101 Nachtergaele B 1987 Exakte resultaten voor het Spin-Boson model Thesis, Katholieke Universiteit 
Leuven 

[ 111 Fannes M, Nachtergaele B and Verbeure A 1987 Quantum tunneling in the spin-boson model Europhys. 
Lett. 4 963-5 

[12] Fannes M, Nachtergaele B and Verbeure A 1988 Tunneling in the equilibrium state of a spin-boson 
model J. Phys. A :  Math. Gen. 21 1759-68 

[13] Fannes M and Nachtergaele B 1988 Translating the spin-boson model into a classical system J. Math. 
Phys. 29 2288-93 

[14] Fannes M 1989 Temperature states of spin-boson models Quantum Probability and Applications IV 
(Lecture Notes in Mathematics 2396) ed L Accardi and W von Waldenfels (Berlin: Springer) 

[15] Fannes M and Verbeure A 1974 On the time evolution automorphisms of the CCR-algebra for quantum 
mechanics Commun. Math. Phys. 35 257-64 

E161 Bratteli 0 and Robinson D W 1987 Operator Algebras and Quantum Statistical Mechanics vol 1 (New 
York: Springer) 2nd edn 

[17] Amann A 1990 Invariant states of C*-systems without norm-continuity properties Preprint 

Phys. 41 389-423 


